#
# This code is Copyright (C) 2015 The Cambridge Crystallographic Data Centre
# (CCDC) of 12 Union Road, Cambridge CB2 1EZ, UK and a proprietary work of CCDC.
# This code may not be used, reproduced, translated, modified, disassembled or
# copied, except in accordance with a valid licence agreement with CCDC and may
# not be disclosed or redistributed in any form, either in whole or in part, to
# any third party. All copies of this code made in accordance with a valid
# licence agreement as referred to above must contain this copyright notice.
#
# No representations, warranties, or liabilities are expressed or implied in the
# supply of this code by CCDC, its servants or agents, except where such
# exclusion or limitation is prohibited, void or unenforceable under governing
# law.
#
'''
The :mod:`ccdc.conformer` module contains classes concerned with molecular
conformations.
The three main classes of the :mod:`ccdc.conformer` module are:
- :class:`ccdc.conformer.MoleculeMinimiser`
- :class:`ccdc.conformer.ConformerGenerator`
- :class:`ccdc.conformer.GeometryAnalyser`
A :class:`ccdc.conformer.MoleculeMinimiser` instance can be used to optimise the bond
distances and valence angles of a 3D input molecule using the
:func:`ccdc.conformer.MoleculeMinimiser.minimise` function::
from ccdc.conformer import MoleculeMinimiser
molecule_minimiser = MoleculeMinimiser()
minimised_mol = molecule_minimiser.minimise(mol)
A :class:`ccdc.conformer.ConformerGenerator` instance can be used to generate a set of
conformers for an input molecule using the
:func:`ccdc.conformer.ConformerGenerator.generate` function::
from ccdc.conformer import ConformerGenerator
from ccdc.io import MoleculeWriter
conformer_generator = ConformerGenerator()
conformers = conformer_generator.generate(mol)
with MoleculeWriter('conformers.mol2') as mol_writer:
for c in conformers:
mol_writer.write(c.molecule)
A :class:`ccdc.conformer.GeometryAnalyser` instance can be used to analyse the geometry
of an input molecule using a knowledge-based library of intramolecular
geometries based on the CSD.
The :class:`ccdc.conformer.GeometryAnalyser` class contains nested classes:
- :class:`ccdc.conformer.GeometryAnalyser.Settings`
- :class:`ccdc.conformer.GeometryAnalyser.Analysis`
- :class:`ccdc.conformer.GeometryAnalyser.AnalysisHit`
The :func:`ccdc.conformer.GeometryAnalyser.analyse_molecule` function can be used to validate
the complete geometry of a given query structure.
>>> from ccdc.io import EntryReader
>>> csd_reader = EntryReader('CSD')
>>> yigpio01 = csd_reader.molecule('YIGPIO01')
>>> from ccdc.conformer import GeometryAnalyser
>>> analysis_engine = GeometryAnalyser()
>>> checked_mol = analysis_engine.analyse_molecule(yigpio01)
>>> for tor in checked_mol.analysed_torsions:
... if tor.unusual:
... print('%s: %d %.2f' % (', '.join(tor.atom_labels), tor.nhits, tor.local_density)) # doctest: +SKIP
...
C36, C12, C11, N1: 72 2.78
O4, C31, N5, C24: 3743 3.55
O5, C31, N5, C24: 3736 3.93
O5, C32, C33, S1: 108 1.85
O5, C32, C33, C34: 73 4.11
'''
##########################################################################
import os
import warnings
warnings.filterwarnings('always', '.*deprecated.*', DeprecationWarning, '.*', 0)
from ccdc.entry import Entry
from ccdc.molecule import Molecule
from ccdc.descriptors import MolecularDescriptors as MD
from ccdc.io import _CSDDatabaseLocator, EntryReader, csd_directory
from ccdc.utilities import Logger, nested_class, bidirectional_dict
from ccdc.utilities import _private_importer
with _private_importer() as pi:
pi.import_ccdc_module('ChemistryLib')
pi.import_ccdc_module('MogulAnalysisLib')
pi.import_ccdc_module('UtilitiesLib')
pi.import_ccdc_module('VirtualScreening')
pi.import_ccdc_module('ConformerGeneratorLib')
pi.import_ccdc_module('AnnotationsLib')
##########################################################################
class _DataRecordExtractor(object):
'''Private: extract relevant fields from a data record.'''
def __init__(self, _dr):
self._dr = _dr
self._cache = dict()
def _get_getter(self, type):
'''Checked find of accessor.'''
try:
return getattr(VirtualScreening, 'get_properties_' + type)
except RuntimeError:
raise KeyError('Invalid type for data record %s' % type)
def _get_full_getter(self, type):
'''Checked find of accessor.'''
try:
return getattr(VirtualScreening, 'get_properties_and_names_' + type)
except RuntimeError:
raise KeyError('Invalid type for data record %s' % type)
def get(self, key, type):
'''Dict like interface.'''
if not key in self._cache:
getter = self._get_getter(type)
try:
val = getter(self._dr, key)
except RuntimeError:
raise KeyError('Invalid key for data record %s' % key)
if not val:
self._cache[key] = None
elif len(val) == 1:
self._cache[key] = val[0].property()
else:
self._cache[key] = tuple(v.property() for v in val)
return self._cache[key]
def get_all(self, type):
getter = self._get_full_getter(type)
return getter(self._dr)
def __str__(self):
'''Print the whole thing.'''
def iprint(*args, **kw):
indent = kw.get('indent', 0)
s = '%s%s' % (' '*indent, ' '.join(map(str, args)))
return s
l = [
iprint(self._dr.identifier()),
]
x = list(iprint('%s: %d' % (n, p.property()), indent=2) for n, p in self.get_all('int'))
if x:
l.append(iprint('int:'))
l.extend(x)
x = list(iprint('%s: %.3f' % (n, p.property()), indent=2) for n, p in self.get_all('double'))
if x:
l.append(iprint('double:'))
l.extend(x)
x = list(iprint('%s: %s' % (n, p.property()), indent=2) for n, p in self.get_all('QString'))
if x:
l.append(iprint('string:'))
l.extend(x)
x = list(iprint('%s:' % n, indent=2) for n, p in self.get_all('HMolecule'))
if x:
l.append(iprint('molecule:'))
l.extend(x)
x = list(iprint('%s: %d' % (n, len(p.property())), indent=2) for n, p in self.get_all('Hvector_HMolecule'))
if x:
l.append(iprint('vector_molecule:'))
l.extend(x)
x = list(iprint('%s' % n, indent=2) for n, p in self.get_all('HCrystalStructure'))
if x:
l.append(iprint('crystal:'))
l.extend(x)
x = list(iprint('%s' % n, indent=2) for n, p in self.get_all('Hvector_int'))
if x:
l.append(iprint('vector_int:'))
l.extend(x)
x = list(iprint('%s: %d' % (n, len(p.property())), indent=2) for n, p in self.get_all('Hvector_double'))
if x:
l.append(iprint('vector_double:'))
l.extend(x)
x = list(iprint('%s:' % n, indent=2) for n, p in self.get_all('HQImage'))
if x:
l.append(iprint('QImage:'))
l.extend(x)
x = list(iprint('%s: %d' % (n, len(p.property())), indent=2) for n, p in self.get_all('Hvector_HQImage'))
if x:
l.append(iprint('vector_QImage:'))
l.extend(x)
return '\n'.join(l)
##########################################################################
class DefaultConformerParameterFileLocator:
'''Dependency injection for the location of a conformer parameter file'''
def locate(self):
return _CSDDatabaseLocator.get_conformer_parameter_file_location()
#@property
#def cluster_atom_rmsd(self):
# '''The atom rmsd used for clustering.'''
# return self._de.get('conf_gen.pass.cluster_atom_rmsd', 'double')
#@property
#def cluster_torsion_dissimilarity(self):
# '''The torsion dissimilarity used for clustering.'''
# return self._de.get('conf_gen.pass.cluster_torsion_dissimilarity', 'double')
#@property
#def cluster_n_conformers_sampled(self):
# '''The number of conformers sampled before clustering.'''
# return self._de.get('conf_gen.pass.n_conf_gen', 'int')
#@property
#def cluster_n_conformers_generated(self):
# '''The number of conformers generated after clustering.'''
# return self._de.get('conf_gen.pass.n_conf_gen_clust', 'int')
##########################################################################
[docs]class MoleculeMinimiser(object):
'''Minimises a single or a list of molecules.'''
def __init__(self, nthreads=1, parameter_locator=DefaultConformerParameterFileLocator()):
'''Initialise the Minimiser.
:param nthreads: number of threads on which to run the minimiser
'''
parameter_files = parameter_locator.locate()
self._minimiser = VirtualScreening.MinimiseMoleculeWorkFlow(
parameter_files, nthreads
)
[docs] def minimise(self, mol):
'''Return a minimised copy of the input molecule.
This makes use of the Tripos force field functional forms.
However, where available equilibrium bond distances and valence angles
are parameterised using data obtained from CSD distributions.
:param mol: :class:`ccdc.molecule.Molecule`
:returns: :class:`ccdc.molecule.Molecule`
'''
if isinstance(mol, Molecule):
dr = self._minimiser.minimise_molecules([mol._molecule])
if dr:
de = _DataRecordExtractor(dr[0])
if de.get('minimiser.pass.success', 'int'):
return Molecule(mol.identifier, _molecule=de.get('minimiser.pass.minimised_molecule', 'HMolecule'))
else:
mols = [m for m in mol if m.all_atoms_have_sites]
mins = self._minimiser.minimise_molecules([m._molecule for m in mols])
return [
Molecule(
mols[i].identifier,
_DataRecordExtractor(dr).get('minimiser.pass.minimised_molecule', 'HMolecule')
)
for i, dr in enumerate(mins)
]
##########################################################################
##########################################################################
[docs]def _mogul_version():
'''The version of mogul being used.'''
return MogulAnalysisLib.MogulVersions().version()
########################################################################
[docs]class GeometryAnalyser(object):
'''The geometry analysis engine.'''
[docs] @nested_class('GeometryAnalyser')
class Settings(object):
'''Controls the operation of the geometry analyser.'''
_solvent_filters = {
MogulAnalysisLib.FilterParameters.INCLUDE_SOLVENTS : 'include_solvent',
MogulAnalysisLib.FilterParameters.EXCLUDE_SOLVENTS : 'exclude_solvent',
MogulAnalysisLib.FilterParameters.SOLVENTS_ONLY : 'only_solvent',
}
_organometallic_filters = {
MogulAnalysisLib.FilterParameters.ORGANIC_AND_ORGANOMETALLIC : 'all',
MogulAnalysisLib.FilterParameters.EXCLUDE_ORGANOMETALLIC : 'organics_only',
MogulAnalysisLib.FilterParameters.EXCLUDE_ORGANIC : 'metalorganics_only',
}
_rfactor_filters = {
MogulAnalysisLib.RFactorDetector.RFACTOR_RANGE : 'Not covered',
MogulAnalysisLib.RFactorDetector.RFACTOR_NULL : 'No category',
MogulAnalysisLib.RFactorDetector.RFACTOR_5 : '< 5%',
MogulAnalysisLib.RFactorDetector.RFACTOR_7_5 : '< 7.5%',
MogulAnalysisLib.RFactorDetector.RFACTOR_10 : '< 10%',
MogulAnalysisLib.RFactorDetector.RFACTOR_ANY : 'any',
}
[docs] @nested_class('GeometryAnalyser.Settings')
class GeometrySettings(object):
'''Settings for a particular fragment type.
In other words settings that are applied to one of the below:
- Bond distances
- Valence angles
- Torsion angles
- Ring RMSDs
'''
_classification_measures = bidirectional_dict([
(MogulAnalysisLib.ResultsClassifierSettings.LOCAL_DENSITY, 'Local density'),
(MogulAnalysisLib.ResultsClassifierSettings.NEAREST_OBSERVATION, 'Nearest observation'),
(MogulAnalysisLib.ResultsClassifierSettings.Z_SCORE, 'Z-score'),
(MogulAnalysisLib.ResultsClassifierSettings.MEAN_DISTANCE, 'Mean distance')
])
def __init__(self, identifier, type, settings):
self._frag_params = MogulAnalysisLib.MogulFragParameters()
self.identifier = identifier
self._type = type
self._settings = settings
self._analyse = True
self.min_obs_generalised = 15
self.min_obs_exact = 15
if identifier == 'torsion':
self.min_obs_generalised = 40
self.min_obs_exact = 40
self.min_relevance = 0.75
self._frag_params.set_selection_mode( self._frag_params.SELECT_BEST )
[docs] def summary(self):
'''Return a summary the settings as a string.'''
if self.classification_measure == 'Local density':
interval = ' interval = %.2f' % self.local_density_tolerance
else:
interval = ''
s = [
'Type: %s' % self.identifier,
'\tAnalyse: %s' % self._analyse,
'\tClassification measure: %s' % self.classification_measure,
'\tClassification measure threshold: %.2f%s' % (
self.classification_measure_threshold, interval
),
'\tMin. Obs. Generalised: %d' % self.min_obs_generalised,
'\tMin. Obs. Exact: %d' % self.min_obs_exact,
'\tMin. Relevance: %.2f' % self.min_relevance,
'\tFew hits threshold: %d' % self.few_hits_threshold,
]
return '\n'.join(s)
@property
def analyse(self):
'''Whether to analyse this fragment type.'''
return self._analyse
@analyse.setter
def analyse(self, value):
self._analyse = value
@property
def classification_measure(self):
'''How to measure whether an observation is unusual.'''
return self._classification_measures[self._settings.classification_measure(self._type)]
@classification_measure.setter
def classification_measure(self, value):
try:
m = self._classification_measures.inverse_lookup(value)
self._settings.set_classification_measure(
self._type, m, self._settings.classification_measure_threshold(self._type, m)
)
except RuntimeError:
raise TypeError('The classification measure %s is inappropriate for %s' %
(value, self.identifier)
)
@property
def classification_measure_threshold(self):
'''The value at which an observation will be found to be unusual.'''
return self._settings.classification_measure_threshold(self._type)
@classification_measure_threshold.setter
def classification_measure_threshold(self, value):
self._settings.set_classification_measure_threshold(self._type, self._classification_measures.inverse_lookup(self.classification_measure), value)
@property
def min_obs_exact(self):
'''Minimum acceptable size of an exact distribution.
If there is no distribution containing at least this number of
observations the geometry analyser will perform a generalised search according to
the criteria specified by other settings.
'''
return self._frag_params.min_obs_exact()
@min_obs_exact.setter
def min_obs_exact(self, value):
self._frag_params.set_min_obs_exact(value)
@property
def min_obs_generalised(self):
'''Minimum number of observations that the geometry analyser should try to find.
If this is 0 then generalised searches will never be performed.
Similarly, if generalisation has been turned off this setting will
not have an effect.
'''
return self._frag_params.min_obs_generalised()
@min_obs_generalised.setter
def min_obs_generalised(self, value):
self._frag_params.set_min_obs_generalised(value)
@property
def min_relevance(self):
'''Relevance criterion for a generalised hit to be accepted.
The geometry analyser determines how similar a fragment is to the query by
calculating a relevance value. The min_relevance setting tells
the geometry analyser to accept, in a generalised search, only fragments whose
relevance is equal to or greater than this threshold.
'''
return self._frag_params.relevance_threshold()
@min_relevance.setter
def min_relevance(self, value):
self._frag_params.set_relevance_threshold(value)
@property
def zscore_threshold(self):
'''Z-score threshold used to classify bonds and angles as unusual.
Note that the z-score is irrelevant for torsions and rings.
'''
return self._settings.classification_measure_threshold(
self._type, MogulAnalysisLib.ResultsClassifierSettings.Z_SCORE
)
@zscore_threshold.setter
def zscore_threshold(self, value):
self._settings.set_classification_measure_threshold(
self._type, MogulAnalysisLib.ResultsClassifierSettings.Z_SCORE, value
)
@property
def local_density_threshold(self):
'''Local density threshold used to classify torsions and rings as unusual.
Note that the local density is irrelevant for bonds and angles.
'''
return self._settings.classification_measure_threshold(
self._type, MogulAnalysisLib.ResultsClassifierSettings.LOCAL_DENSITY
)
@local_density_threshold.setter
def local_density_threshold(self, value):
self._settings.set_classification_measure_threshold(
self._type, MogulAnalysisLib.ResultsClassifierSettings.LOCAL_DENSITY, value
)
@property
def local_density_tolerance(self):
'''The local density tolerance.'''
return self._settings.local_density_interval(self._type)
@local_density_tolerance.setter
def local_density_tolerance(self, value):
self._settings.set_local_density_interval(self._type, value)
@property
def few_hits_threshold(self):
'''Threshold below which a distribution is considered to have too few hits.'''
return self._settings.minimum_observations_threshold(self._type)
@few_hits_threshold.setter
def few_hits_threshold(self, value):
self._settings.set_minimum_observations_threshold(self._type, value)
def __init__(self):
'''Construct the default geometry analyser settings.'''
self._parameters = MogulAnalysisLib.MogulSearchParameters()
self._settings = MogulAnalysisLib.ResultsClassifierSettings(
MogulAnalysisLib.ResultsClassifierSettings.INSTRUCTION_FILE
)
self.generalisation = True
self.bond = GeometryAnalyser.Settings.GeometrySettings('bond', MogulAnalysisLib.BondLengths, self._settings)
self.angle = GeometryAnalyser.Settings.GeometrySettings('angle', MogulAnalysisLib.ValenceAngles, self._settings)
self.torsion = GeometryAnalyser.Settings.GeometrySettings('torsion', MogulAnalysisLib.TorsionAngles, self._settings)
self.ring = GeometryAnalyser.Settings.GeometrySettings('ring', MogulAnalysisLib.Rings, self._settings)
self._parameters.set_frag_parameters(
MogulAnalysisLib.BondLengths, self.bond._frag_params
)
self._parameters.set_frag_parameters(
MogulAnalysisLib.ValenceAngles, self.angle._frag_params
)
self._parameters.set_frag_parameters(
MogulAnalysisLib.TorsionAngles, self.torsion._frag_params
)
self._parameters.set_frag_parameters(
MogulAnalysisLib.Rings, self.ring._frag_params
)
self._filters = MogulAnalysisLib.FilterParameters()
self._parameters.set_filters(self._filters)
[docs] def summary(self):
'''Return a summary the settings as a string.'''
s = [
'Generalisation: %s' % self.generalisation,
'Impose upper limits: %s' % self.impose_upper_limits,
'Filter rfactor: %s' % self.rfactor_filter,
'Filter heaviest element: %s' % self.heaviest_element,
'Filter solvent: %s' % self.solvent_filter,
'Filter organometallic: %s' % self.organometallic_filter,
'Filter powder: %s' % self.powder_filter,
self.bond.summary(),
self.angle.summary(),
self.torsion.summary(),
self.ring.summary(),
]
return '\n'.join(s)
@property
def generalisation(self):
'''Setting determining if searches should be generalised or not.'''
return self._parameters.generalise()
@generalisation.setter
def generalisation(self, tf):
self._parameters.set_generalise(tf)
@property
def impose_upper_limits(self):
'''Whether there an upper limit imposed on generalised searches or not.
This setting tells the geometry analyser whether or not to limit the number of levels
traversed for generalised searches. Occasionally the geometry analyser can take a very
long time to identify similar fragments when performing a generalised
search. Limiting the number of levels traversed will reduce the
chances of this happening but may also result n fewer hits being
found.
'''
return self._parameters.impose_upper_level_limits()
@impose_upper_limits.setter
def impose_upper_limits(self, tf):
self._parameters.set_impose_upper_level_limits(tf)
@property
def rfactor_filter(self):
'''Filter on R-factor.
Note that there are only four possible settings for this option:
- 0.05
- 0.075
- 0.1
- any
However you can set the filter using any value and the appropriate
filter will be selected. Note that if the value supplied is greater
than 0.1 this means that the R-factor filter will be set to ``None``.
If you set the filter to ``None`` or 'any' the filter will also be set to ``None``.
'''
return self._rfactor_filters[self._filters.rfactor()]
@rfactor_filter.setter
def rfactor_filter(self, val):
if val is None:
val = 'any'
if isinstance(val, str):
s = val.replace(' ', '')
f = 1.0
else:
f = float(val)
s = ''
if s.lower() == 'any':
self._filters.set_rfactor(MogulAnalysisLib.RFactorDetector.RFACTOR_ANY)
elif 0.0 <= f <= 0.05 or s == '<5%':
self._filters.set_rfactor(MogulAnalysisLib.RFactorDetector.RFACTOR_5)
elif 0.05 < f <= 0.075 or s == '<7.5%':
self._filters.set_rfactor(MogulAnalysisLib.RFactorDetector.RFACTOR_7_5)
elif 0.075 < f <= 0.1 or s == '<10%':
self._filters.set_rfactor(MogulAnalysisLib.RFactorDetector.RFACTOR_10)
else:
self._filters.set_rfactor(MogulAnalysisLib.RFactorDetector.RFACTOR_ANY)
@property
def heaviest_element(self):
'''Filter on heaviest element.
This setting tells the geometry analyser to ignore hits from CSD structures that have
elements heavier than that for a specified atomic symbol.
The atomic symbol is case sensitive.
'''
i = self._filters.heaviest_element()
return ChemistryLib.Element.ccdc_code_to_atomic_symbol(
ChemistryLib.Element.atomic_number_to_ccdc_code(i)
)
@heaviest_element.setter
def heaviest_element(self, atomic_symbol):
i = ChemistryLib.Element.ccdc_code_to_atomic_number(
ChemistryLib.Element.atomic_symbol_to_ccdc_code(atomic_symbol)
)
self._filters.set_heaviest_element(i)
@property
def solvent_filter(self):
'''Configure how solvents and non-solvents should be filtered.
This setting instructs the geometry analyser to ignore fragments depending on whether
they are from solvent or non-solvent molecules.
There are three possible options for this setting:
- 'include_solvent'
- 'exclude_solvent'
- 'only_solvent'
'''
return self._solvent_filters[self._filters.solvent()]
@solvent_filter.setter
def solvent_filter(self, val):
if val.lower().startswith('inc'):
self._filters.set_solvent(MogulAnalysisLib.FilterParameters.INCLUDE_SOLVENTS)
elif val.lower().startswith('exc'):
self._filters.set_solvent(MogulAnalysisLib.FilterParameters.EXCLUDE_SOLVENTS)
elif val.lower().startswith('only'):
self._filters.set_solvent(MogulAnalysisLib.FilterParameters.SOLVENTS_ONLY)
else:
raise TypeError('solvent_filter should be one of %s' % ', '.join(self._solvent_filters.values()))
@property
def organometallic_filter(self):
'''Configure how organometallic and organic hits should be filtered.
This setting instructs the geometry analyser to ignore fragments depending on whether
they are from organic or organometallic structures.
There are three possible options for this setting:
- 'all'
- 'metalorganics_only'
- 'organics_only'
'''
return self._organometallic_filters[self._filters.organometallic()]
@organometallic_filter.setter
def organometallic_filter(self, val):
if val.lower().startswith('all'):
self._filters.set_organometallic(MogulAnalysisLib.FilterParameters.ORGANIC_AND_ORGANOMETALLIC)
elif 'metal' in val.lower():
self._filters.set_organometallic(MogulAnalysisLib.FilterParameters.EXCLUDE_ORGANIC)
elif 'organ' in val.lower():
self._filters.set_organometallic(MogulAnalysisLib.FilterParameters.EXCLUDE_ORGANOMETALLIC)
else:
raise TypeError('organometallic filter should be one of %s' % ', '.join(self._organometallic_filters.values()))
@property
def powder_filter(self):
'''Configure whether or not powder structures be filtered.
This setting instructs the geometry analyser to ignore if set to True or retain
if set to False, fragments from powder study analyses.
'''
return not self._filters.allow_powder()
@powder_filter.setter
def powder_filter(self, val):
self._filters.set_allow_powder(not val)
########################################################################
[docs] class AnalysisHit(object):
'''A single geometry analysis hit fragment.
In other words one of the observations that make up the geometry analysis
distribution.
'''
def __init__(self, refcode, source, value, _analysis, _distrib, _index):
'''A proxy for a hit.'''
self.refcode = refcode
self._source = source
self.value = value
self._analysis = _analysis
self._distrib = _distrib
self._index = _index
self._atoms = None
self._labels = None
self._entry = None
self._crystal = None
self._molecule = None
@property
def identifier(self):
'''The identifier of the hit.'''
return self.refcode
@property
def source_name(self):
'''The name of the source of the hit.'''
return self._source.name()
@property
def entry(self):
'''The hit entry.'''
if self._entry is None:
db = self._source.source_database()
if db is not None:
self._entry = Entry(_entry=db.entry(UtilitiesLib.DatabaseEntryIdentifier(self.refcode)))
return self._entry
@property
def crystal(self):
'''The hit crystal.'''
if self._crystal is None:
e = self.entry
if e is not None:
self._crystal = e.crystal
return self._crystal
@property
def molecule(self):
'''The hit molecule.'''
if self._molecule is None:
e = self.entry
if e is not None:
self._molecule = e.molecule
return self._molecule
@property
def similarity_score(self):
'''The similarity of the matched fragment to the analysed fragment.
This will be 1.0 for an exact match, and a lower value for a generalised match.
'''
return self._distrib.score()
def _make_fragment(self):
'''Lazy construction of the fragment.'''
frag = self._analysis.fragment(self._distrib, self._index)
if frag is not None:
self._labels = frag.labels().split()
else:
self._labels = ''
@property
def atoms(self):
'''The atoms of a hit.'''
if self._atoms is None:
def _find_atom(a):
try:
return self.molecule.atom(a.label())
except RuntimeError:
for at in self.molecule.atoms:
if at.label == a.label():
orth = a.site().orth()
coords = at.coordinates
if (
round(orth.x(), 4) == round(coords[0], 4) and
round(orth.y(), 4) == round(coords[1], 4) and
round(orth.z(), 4) == round(coords[2], 4)
):
return at
raise RuntimeError('Cannot find atom in molecule')
frag = self._analysis.fragment(self._distrib, self._index)
ats = [frag.atom(i) for i in range(frag.natoms())]
self._atoms = [_find_atom(at) for at in ats]
return self._atoms
@property
def atom_indices(self):
'''The indices of the matched atoms in the hit molecule.'''
return [a.index for a in self.atoms]
@property
def atom_labels(self):
'''The labels of the matched atoms in the hit molecule.'''
return [a.label for a in self.atoms]
@property
def bond_length(self):
'''The bond length of the hit fragment.
:raises: TypeError if the hit is not for a bond length
'''
if len(self.atoms) == 2:
return self.value
raise TypeError('This is not a bond length hit')
@property
def valence_angle(self):
'''The valence angle of the hit fragment.
:raises: TypeError if the hit is not for a valence angle
'''
if len(self.atoms) == 3:
return self.value
raise TypeError('This is not a valence angle hit')
@property
def torsion_angle(self):
'''The absolute value of the torsion angle of the hit fragment.
The sign of a torsion angle calculated from a CSD entry is often arbitrary. For
example, if the CSD entry is centrosymmetric, for every torsion angle with a positive
sign there is, elsewhere in the unit cell, a symmetry-equivalent torsion with a
negative sign. Consequently, only the absolute values of torsion angles are used.
:raises: TypeError if the hit is not for a torsion angle
'''
if len(self.atoms) == 4:
return self.value
raise TypeError('This is not a torsion hit')
########################################################################
[docs] @nested_class('GeometryAnalyser')
class Analysis(object):
'''A single geometric analysis for a specific bond, angle, torsion or ring feature.
'''
type_to_name = {
MogulAnalysisLib.BondLengths : 'bond',
MogulAnalysisLib.ValenceAngles : 'angle',
MogulAnalysisLib.TorsionAngles : 'torsion',
MogulAnalysisLib.Rings : 'ring'
}
def __init__(self, analysis, mol, classification, settings, siteless):
'''A proxy for a toolkit Mogul result.'''
self._search_output = analysis
self._statistics = analysis.statistics()
self.classification = classification
self._settings = settings
inxs = [s.index for s in siteless]
self.atom_indices = [self._search_output.fragment().atom(i).index() for i in range(self._search_output.fragment().natoms())]
for i in self.atom_indices:
if i in inxs:
self._invalidate()
break
else:
self._valid = True
def _invalidate(self):
'''Private: invalidate the hit.'''
self._valid = False
try:
self.classification = self.classification[self.classification.index('('):]
except ValueError:
pass
@property
def generalised(self):
'''Whether or not the analysis for this fragment resulted from a generalised search.'''
return self._search_output.message() not in [
'Found required number of exact hits',
'Exact search completed'
]
@property
def unusual(self):
'''Check if the geometric feature is unusual or not.
If the enough_hits and few_hits parameters are set to True (default
behaviour) this function will return True if the geometric feature is
classified as unusual.
If the few_hits parameter is set to False this function will only
return True if the geometric feature is unusual and there are enough
hits to support this claim.
If the enough_hits parameter is set to False this function will only
return True if the geometric feature is unusual and there is not
enough hits to support this claim.
If both the enough_hits and few_hits parameter are set to False then
this function will always return False.
'''
if self._valid:
return self.classification.startswith('Unusual')
@property
def few_hits(self):
'''Whether there be enough hits for a sound judgement.'''
return 'few hits' in self.classification
@property
def enough_hits(self):
'''Whether there be enough hits for a sound judgement.'''
return 'enough hits' in self.classification
@property
def no_hits(self):
'''Whether the fragment has no data within the CSD.'''
return self.classification == 'No hits'
# Fragment
@property
def fragment_label(self):
'''Underscore separated string of atom labels.'''
return self._search_output.fragment().labels().strip().replace(' ', '_')
@property
def atom_labels(self):
'''The labels of atoms in the reference fragment.'''
return self._search_output.fragment().labels().strip().split()
@property
def value(self):
'''Geometric value represented by the reference fragment.'''
if self._valid and self._search_output.fragment().valid_value():
return self._search_output.fragment().geometric_value()
@property
def type(self):
'''The type of geometric feature represented by this result.
In other words was this
:class:`ccdc.conformer.GeometryAnalyser.Analysis` derived from a
bond, angle, torsion or ring analysis.
'''
return self.type_to_name[self._search_output.fragment().scan_type()]
# Statistics
@property
def mean(self):
'''The mean of the distribution.'''
return self._statistics.mean()
@property
def nhits(self):
'''The number of hits in the distribution.'''
return self._statistics.number()
@property
def minimum(self):
'''The minimum of the distribution.'''
return self._statistics.minimum()
@property
def maximum(self):
'''The maximum of the distribution.'''
return self._statistics.maximum()
@property
def median(self):
'''The median of the distribution.'''
return self._statistics.median()
@property
def standard_deviation(self):
'''The standard deviation of the distribution.'''
return self._statistics.standard_deviation()
@property
def upper_quartile(self):
'''The upper quartile of the distribution.'''
return self._statistics.upper_quartile()
@property
def lower_quartile(self):
'''The lower quartile of the distribution.'''
return self._statistics.lower_quartile()
[docs] def percentile(self, p):
'''Return the percentile of the observed value.
:raises: TypeError if the value (p) is not between 0 and 1.
'''
if p < 0 or p > 1:
raise TypeError('The percentile value %f must be 0 <= p <= 1' % p)
return self._statistics.percentile(p)
@property
def z_score(self):
'''Return the Z-score of the observed value.
'''
if self.value is not None and self.type not in ['torsion', 'ring']:
return self._statistics.z_score(self.value)
@property
def d_min(self):
'''Return the distance to the nearest observed value.
If rawscore is not specified, the geometric value of the query
fragment will be used.
'''
if self.value is not None:
return self._statistics.d_min(self.value)
@property
def local_density(self):
'''Local density of the distribution around the query value.'''
if self.type == 'ring':
value = 0.0
elif self.value is None:
return None
else:
value = self.value
return self._statistics.interval_probability(
value,
self._settings.local_density_interval(
self._search_output.fragment().scan_type()
)
) * 100.0
# Omitted shannon_interval_probability and interval_probability for now
[docs] def histogram(self, bin_size=None, minimum=None, maximum=None):
'''Return the histogram of the distribution as a tuple of integers.
This function puts the distribution values into bins according to the
criteria specified.
:param bin_size: defaults to (maximum - minimum)/40 if set to None
:param minimum: The minimum value of the distribution range. If None, defaults to 0 for torsions, or the
minimum value in the distribution (or the query fragment value if smaller) for other fragment types
:param maximum: The maximum value of the histogram range. If None, defaults to 180 for torsions, or the
maximum value in the distribution (or the query fragment value if larger) for other fragment types
:returns: tuple of integers
'''
if self.value is None:
value = 0.0
else:
value = self.value
# Default range for torsions is fixed at 0-180, rather than based on the distribution as for other types
is_torsion = (self._search_output.fragment().scan_type() == MogulAnalysisLib.TorsionAngles)
if minimum is None:
minimum = 0.0 if is_torsion else min(value, self.minimum)
if maximum is None:
maximum = 180.0 if is_torsion else max(value, self.maximum)
if bin_size is None:
bin_size = (maximum - minimum)/40.
binning = MogulAnalysisLib.MogulDistributionBinning(
self.distribution, bin_size, minimum, maximum
)
return binning.bin_occupancies()
@property
def distribution(self):
'''List of numeric values found by the search.'''
return self._search_output.statistics().values()
@property
def hits(self):
'''List of :class:`ccdc.conformer.GeometryAnalyser.AnalysisHit` instances found by the search.
Note that the features below can be extracted from an :class:`ccdc.conformer.GeometryAnalyser.AnalysisHit`:
- :attr:`ccdc.conformer.GeometryAnalyser.AnalysisHit.molecule`
- :attr:`ccdc.conformer.GeometryAnalyser.AnalysisHit.atom_indices`
- :attr:`ccdc.conformer.GeometryAnalyser.AnalysisHit.atom_labels`
- ``value`` of the geometric feature in the hit
For more information see the
:class:`ccdc.conformer.GeometryAnalyser.AnalysisHit`
documentation.
'''
result = []
for d in self._search_output.all_results():
for i in range(d.nhits()):
h = d.mogul_hit_element(i)
result.append(
GeometryAnalyser.AnalysisHit(
h.refcode_name().strip(),
h.source_library(),
h.value(),
self._search_output,
d,
i
)
)
return result
@property
def hit_identifiers(self):
'''List of molecule identifiers of the hits in the distribution.'''
result = []
for d in self._search_output.all_results():
result.extend(x.strip() for x in d.refcode_names())
return result
@property
def hit_molecules(self):
'''The list of molecules hit by this result.'''
return [
h.molecule for h in self.hits
]
########################################################################
def __init__(self, settings=None, databases=None, ignore_updates=False):
'''The geometry analysis engine
The optional list of databases defaults to the CSD. If provided it can
include the CSD, and the paths of "mogul.path" files in Mogul data.
Example:
>>> analyser = GeometryAnalyser(databases=['CSD', '/data/1/mogul.path']) # doctest: +SKIP
:param settings: Optional settings override
:param databases: An optional list of databases
:param ignore_updates: Set to True to only set up main CSD database
'''
if settings is None:
self.settings = GeometryAnalyser.Settings()
else:
self.settings = settings
mogul_setup = MogulAnalysisLib.MogulMainSetup()
mogul_setup.retrieve(mogul_setup.IGNORE_USER_LIBRARIES_FROM_QSETTINGS)
if databases is None:
databases = ['CSD']
self._database_files = []
for database in databases:
if database.upper() == 'CSD':
self._setup_databases_csd(mogul_setup, ignore_updates)
else:
self._setup_database_user(mogul_setup, database)
self._check_databases()
'''Initialise the mogul instance with an optional settings instance.'''
if len(self._database_files) == 1:
self._data_library = MogulAnalysisLib.MogulCompositeDataLibrary(
self._database_files[0]
)
else:
vec = MogulAnalysisLib.vector_HMogulSingleSourceDataLibrary(len(self._database_files))
for i, s in enumerate(self._database_files):
vec[i] = s
self._data_library = MogulAnalysisLib.MogulCompositeDataLibrary(
vec
)
self._searcher = MogulAnalysisLib.MogulUniversalSearch(
self._data_library,
self.settings._parameters
)
self._classifier = MogulAnalysisLib.ResultsClassifier()
self._altered = []
def _setup_databases_csd(self, mogul_setup, ignore_updates):
'''Set up the CSD databases
:param mogul_setup: A Mogul setup object
:param ignore_updates: Set to True to only set up main CSD database
:return: None
'''
rdr = EntryReader('csd')
if isinstance(rdr.file_name, list):
dbs = rdr.file_name
else:
dbs = [rdr.file_name]
for fname in dbs:
db = EntryReader(fname)
base = os.path.splitext(os.path.basename(fname))[0]
possible = os.path.join(mogul_setup.mogul_data(), base)
if possible.endswith('_ASER'):
possible = possible[:-5]
if os.path.exists(possible):
if not ignore_updates:
df = MogulAnalysisLib.MogulDataFiles(
mogul_setup.fragment_types(),
possible,
db._db,
base
)
self._database_files.append(df)
else:
df = MogulAnalysisLib.MogulDataFiles(
mogul_setup.fragment_types(),
mogul_setup.mogul_data(),
db._db,
'CSD'
)
self._database_files.append(df)
def _setup_database_user(self, mogul_setup, mogul_path):
'''Set up a user-provided database
:param mogul_setup: A Mogul setup object
:param mogul_path: A mogul.path file
:return: None
'''
mogul_dir = os.path.dirname(mogul_path)
mpf = MogulAnalysisLib.MogulPathFile(mogul_path)
database = mpf.aser_path()
name = mpf.name()
if database and os.path.exists(database):
db_file = EntryReader(database)._db
if not name:
name = os.path.splitext(os.path.basename(database))[0]
else:
db_file = None
name = 'No sqlite format database'
logger = Logger()
logger.warning(
f'Unable to locate sqlite database from file: {mogul_path}'
)
if self.settings.ring.analyse:
logger.warning(
'Turning ring analysis off as no sqlite database found.'
)
self.settings.ring.analyse = False
df = MogulAnalysisLib.MogulDataFiles(mogul_setup.fragment_types(),
mogul_dir, db_file, name)
self._database_files.append(df)
@property
def database_files_path(self):
'''The directory of the databases
:returns: a list of str
'''
return [os.path.normpath(d.path()) for d in self._database_files]
@property
def database_files_name(self):
'''The name of the databases, for example ['CSD', 'Sep23_ASER']
:returns: a list of str
'''
return [d.name() for d in self._database_files]
@property
def database_files_source_db_file_name(self):
'''The file name of the source databases
:returns: a list of str
'''
source_file_names = []
for database in self._database_files:
src_db = database.source_database()
if src_db:
source_file_names.append(os.path.normpath(src_db.file_name()))
else:
source_file_names.append(None)
return source_file_names
def _check_databases(self):
for d in self._database_files:
if not os.path.exists(d.path()) or not os.path.isdir(d.path()):
raise RuntimeError('Database is not a valid CSD format database %s' % d.path())
def __del__(self):
'''Tidy up.'''
self._searcher = None
self._data_library = None
[docs] def fragment_identifier(self, fragment):
'''The unique identifier of a particular type of fragment.
This is a string encoding the molecular environment of a fragment.
:param fragment: an instance of :class:`ccdc.conformer.GeometryAnalyser.Analysis`
:returns: a string of four numbers separated by colons.
'''
frag_id = '_%s_fragment_identifier' % fragment.type
scan_type = fragment._search_output.fragment().scan_type()
if not hasattr(self, frag_id):
setattr(self, frag_id,
MogulAnalysisLib.FragmentIdentifier(
self._data_library.tree(MogulAnalysisLib.MogulFragmentTypeAndVersion(scan_type)), scan_type
)
)
return getattr(self, frag_id).identifier(fragment._search_output.fragment())
def _one_search(self, mol, ty):
'''PRIVATE: implementation of a single search.'''
self._searcher.make_fragments(mol._molecule, ty)
search_output = self._searcher.search_all_fragments()
result = list()
for i, r in enumerate(search_output):
which = self._classifier.classification(r, self.settings._settings)
if which.startswith('Excluded'):
continue
result.append(GeometryAnalyser.Analysis(r, mol, which, self.settings._settings, self._altered))
return result
[docs] def analyse_molecule(self, mol, _max_atoms_to_analyse=999):
'''Perform a geometry analysis of the whole molecule.
:params mol: :class:`ccdc.molecule.Molecule` to be analysed
:returns: :class:`ccdc.molecule.Molecule` augmented with analysis data
'''
num_heavy_atoms = len(mol.heavy_atoms)
if _max_atoms_to_analyse and num_heavy_atoms > _max_atoms_to_analyse:
raise RuntimeError('Too many atoms for geometry analysis ({} > {})'.format(
num_heavy_atoms, _max_atoms_to_analyse))
result = mol.copy()
if len(set(a.label for a in result.heavy_atoms)) < num_heavy_atoms:
result.normalise_labels()
self._altered = []
if not result.all_atoms_have_sites:
for a in result.atoms:
if a.coordinates is None:
a.coordinates = [0, 0, 0]
self._altered.append(a)
self.settings._parameters.set_filters(self.settings._filters)
self._searcher = MogulAnalysisLib.MogulUniversalSearch(
self._data_library,
self.settings._parameters
)
if self.settings.bond.analyse:
result.analysed_bonds = self._one_search(result, MogulAnalysisLib.BondLengths)
if self.settings.angle.analyse:
result.analysed_angles = self._one_search(result, MogulAnalysisLib.ValenceAngles)
if self.settings.torsion.analyse:
result.analysed_torsions = self._one_search(result, MogulAnalysisLib.TorsionAngles)
if self.settings.ring.analyse:
try:
result.analysed_rings = self._one_search(result, MogulAnalysisLib.Rings)
except RuntimeError:
result.analysed_rings = []
for a in self._altered:
a.coordinates = None
if all(abs(a.coordinates.z) < 1e-7 for a in result.heavy_atoms if a.coordinates is not None):
if hasattr(result, 'analysed_bonds'):
for h in result.analysed_bonds:
h._invalidate()
if hasattr(result, 'analysed_angles'):
for h in result.analysed_angles:
h._invalidate()
if hasattr(result, 'analysed_torsions'):
for h in result.analysed_torsions:
h._invalidate()
if hasattr(result, 'analysed_rings'):
result.analysed_rings = []
return result
def _fragment_search(self, ty, mol, atoms):
self.settings._parameters.set_filters(self.settings._filters)
self._altered = []
for a in atoms:
if a.coordinates is None:
a.coordinates = [0, 0, 0]
self._altered.append(a)
nfrags = self._searcher.make_fragments(
mol._molecule,
ty,
[a._atom for a in atoms]
)
if nfrags == 0:
raise TypeError('The atoms %s do not form a valid mogul %s' % (
' '.join(a.label for a in atoms),
GeometryAnalyser.Analysis.type_to_name[ty]
))
return self._searcher.fragment_search(0)
def _analyse_fragment(self, ty, atoms):
'''Private: analyse a single fragment.'''
mol = Molecule('MOGUL', atoms[0]._atom.molecule())
search_output = self._fragment_search(ty, mol, atoms)
classification = self._classifier.classification(search_output, self.settings._settings)
result = GeometryAnalyser.Analysis(search_output, mol, classification, self.settings._settings, self._altered)
for a in self._altered:
a.coordinates = None
return result
[docs] def analyse_bond(self, a, b):
'''Perform a geometry analysis on a single bond.
:params a: :class:`ccdc.molecule.Atom`
:params b: :class:`ccdc.molecule.Atom`
:returns: :class:`ccdc.conformer.GeometryAnalyser.Analysis`
:raises: TypeError if the atoms supplied do not form a covalent bond
'''
return self._analyse_fragment(MogulAnalysisLib.BondLengths, [a, b])
[docs] def analyse_angle(self, a, b, c):
'''Perform a geometry analysis on a single valence angle.
:params a: :class:`ccdc.molecule.Atom`
:params b: :class:`ccdc.molecule.Atom`
:params c: :class:`ccdc.molecule.Atom`
:returns: :class:`ccdc.conformer.GeometryAnalyser.Analysis`
:raises: TypeError if the atoms supplied do not make up a bonded angle
'''
return self._analyse_fragment(MogulAnalysisLib.ValenceAngles, [a, b, c])
[docs] def analyse_torsion(self, a, b, c, d):
'''Perform a geometry analysis on a single torsion angle.
:params a: :class:`ccdc.molecule.Atom`
:params b: :class:`ccdc.molecule.Atom`
:params c: :class:`ccdc.molecule.Atom`
:params d: :class:`ccdc.molecule.Atom`
:returns: :class:`ccdc.conformer.GeometryAnalyser.Analysis`
:raises: TypeError if the atoms supplied do not make up a bonded torsion
'''
return self._analyse_fragment(MogulAnalysisLib.TorsionAngles, [a, b, c, d])
[docs] def analyse_ring(self, *ats):
'''Perform a geometry analysis on a single ring.
:params `*ats`: :class:`ccdc.molecule.Atom` instances that make up the ring
:returns: :class:`ccdc.conformer.GeometryAnalyser.Analysis`
:raises: TypeError if the atoms supplied do not make up a ring
'''
return self._analyse_fragment(MogulAnalysisLib.Rings, ats)
########################################################################